Fall 2016 Course Descriptions

Block I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7001</td>
<td>Biochemistry</td>
<td>1</td>
</tr>
<tr>
<td>7504</td>
<td>Biostatistics II for Clinical Investigators</td>
<td>2</td>
</tr>
<tr>
<td>7404</td>
<td>Cell Biology of Neuronal Function</td>
<td>3</td>
</tr>
<tr>
<td>7503</td>
<td>Epidemiology II for Clinical Investigators</td>
<td>4</td>
</tr>
<tr>
<td>7026</td>
<td>Introduction to Systems Biology</td>
<td>5</td>
</tr>
<tr>
<td>5011</td>
<td>MSTP Cardiac Physiology</td>
<td>6</td>
</tr>
<tr>
<td>5010</td>
<td>Membrane Physiology & Transport</td>
<td>7</td>
</tr>
<tr>
<td>7401</td>
<td>Molecular and Cellular Neuroscience</td>
<td>8</td>
</tr>
<tr>
<td>7006</td>
<td>Molecular Genetics</td>
<td>9</td>
</tr>
</tbody>
</table>
7001 Biochemistry

COURSE DESCRIPTION: This is an 8 week introduction to fundamental topics in biochemistry and physical biochemistry. Topics include: protein structure, folding, and function, nucleic acid structure and protein-DNA interactions, carbohydrates & glycoproteins, lipids & membranes, enzymology, energetics & allostery, posttranslational modification of protein function, transcription, translation, and DNA replication. The course also covers some aspects of basic metabolism (glycolysis and the citric acid cycle). The material is presented in formal lectures in conjunction with a structure-based macromolecules project that includes an oral presentation, discussion sessions, and reading of the literature.

PREREQUISITES: One semester of undergraduate biochemistry and a course in organic chemistry are required. Undergraduate physical chemistry is also helpful preparation. Students who are uncertain about the adequacy of their undergraduate training for this course should discuss the issue with their advisory committee and then consult the course leader.

STUDENT PREPARATION: Students should be familiar with the general principles of biochemistry including basic knowledge of amino acid and nucleic acid structure. They should also be familiar with general principles such as DNA replication, transcription and translation.

SUITE FOR 1ST YEAR STUDENTS: Yes

UNIQUE TRAINING OFFERED IN THIS COURSE: This is a general course teaching the fundamentals of biochemistry.

STUDENT ASSESSMENTS: Each student is required to take two non-cumulative examinations that cover each part of the course and to participate in and complete the macromolecules project. Grade will be based on the two exams, the macromolecules project and the discussion sessions.

CREDIT HOURS: 4.0
7504 Biostatistics II for Clinical Investigators

COURSE DESCRIPTION: Biostatistics II builds on the knowledge of univariate and bivariate analyses that were learned in the “Summer Intensive” course and introduces concepts related to multivariate model building for multiple linear regression. Both the lecture and the lab will focus on multiple linear regression model building, interpretation and diagnostic tests, assessing for interaction, and statistical adjustment for confounding.

REQUIRED MATERIALS: Regression Methods in Biostatistics. Vittinghoff et al: available online through the Einstein Library

(to access you must be at Einstein or have remote access to the library: http://www.springerlink.com/content/ln5141/#section=517417&page=1

Primer of Applied Regression and Analysis of Variance. Glantz & Slinker: available for loan via the CRTP Library

PREREQUISITES: N/A

STUDENT PREPARATION: Students are expected to know the basic design issues of retrospective and prospective studies as well as clinical trials from Epi I.

SUITABLE FOR 1ST YEAR STUDENTS: No

UNIQUE TRAINING OFFERED IN THIS COURSE: N/A

STUDENT ASSESSMENTS: Class Participation 10%, Homework 30%, In-class readiness assurance tests 30%, Final Exam (in-class and take home components) 30%

(CLOSED REGISTRATION) LIMITED TO 15 STUDENTS NEED APPROVAL FROM PROGRAM DIRECTOR-DR. ELLIE SCHOENBAUM (PICK UP COURSE REGISTRATION FORM IN THE GRADUATE OFFICE)

CREDIT HOURS: 3.0
7404 Cell Biology of Neuronal Function

COURSE DESCRIPTION: We will consider the neuronal specific adaptations of organelles and pathways that regulate proteostasis. In-depth review of mechanisms underlying protein synthesis, recycling and degradation in neurons; mechanisms of polarized trafficking underlying protein localization at specific locations during neuronal differentiation and in mature neurons; neuronal homeostatic adaptations to activity-dependent changes in the intact circuitry; molecular basis of activity-dependent synapse remodeling under physiopathological conditions.

REQUIRED MATERIALS: No specific material, including textbook, required; the Course will be structured to include lectures, discussion of current literature and attendance to seminars by Invited Speakers on topics related to Course material.

PREREQUISITES: No prerequisite; previous attendance of the neuroscience MCN Course encouraged but not required.

STUDENT PREPARATION: Undergraduate level Cell Biology preferred but not required.

SUITABLE FOR 1ST YEAR STUDENTS: Yes

UNIQUE TRAINING OFFERED IN THIS COURSE: Current Neuroscience Courses focus primarily on electrical properties of neurons, properties of ion channels, synaptic activity (MCN); properties of neuronal networks (System Neuroscience); and development of the nervous system (Developmental Neuroscience). The proposed elective Course will complement the curriculum by providing in-depth review of fundamental cellular mechanisms that endow neurons with the molecular machinery underlying their unique property of supporting directional information flow and capacity to modify such machinery on demand.

STUDENT ASSESSMENTS: Class participation and Oral presentation

THE COURSE IS LIMITED TO A GROUP OF 15 STUDENTS

CREDIT HOURS: 1.5
7503 Epidemiology II for Clinical Investigators

COURSE DESCRIPTION: This course focuses on the analytical issues of epidemiological studies: biases, confounding, interaction, statistical methods used in case-control and longitudinal studies, and sample size/statistical power. The homework will reinforce these concepts. Students are expected to know the basic design issues of retrospective and prospective studies as well as clinical trials from Epi I.

PREREQUISITES: N/A

STUDENT PREPARATION: Students are expected to know the basic design issues of retrospective and prospective studies as well as clinical trials from Epi I.

SUITABLE FOR 1ST YEAR STUDENTS: No

UNIQUE TRAINING OFFERED IN THIS COURSE: N/A

STUDENT ASSESSMENTS: Homework/Class Participation 30%, Mid-term test 30%, Final Exam 40%

(CLOSED REGISTRATION) LIMITED TO 15 STUDENTS NEED APPROVAL FROM PROGRAM DIRECTOR-DR. ELLIE SCHOENBAUM (PICK UP COURSE REGISTRATION FORM IN THE GRADUATE OFFICE)

CREDIT HOURS: 3.0
7026 Introduction to Systems Biology

COURSE DESCRIPTION: By means of biological case studies we will cover a broad range of relevant techniques from mathematical, statistical, and computational sciences. In this course we will introduce computational and simulation platforms that the students will build upon as the course progresses. By the end of the course we expect all students to have attained a substantial programming proficiency. The main aim of this course is to provide the students with the means to move beyond quantitative techniques for descriptive purposes alone, towards making biologically relevant predictive models.

REQUIRED MATERIALS: Laptop computer is required for classroom work

PREREQUISITES: Quantitative background encouraged

STUDENT PREPARATION: Preferred pre-requisite (not required) Calculus, Linear Algebra, Differential Equations and Stochastic Processes. Also, Background in computer programing such as C/C++ or any other programming language as well as biostatistics is desirable.

SUITABLE FOR 1ST YEAR STUDENTS: Yes

UNIQUE TRAINING OFFERED IN THIS COURSE: The course offer the student with the knowledge of the computational platform Matlab and R, and their usage in modeling biological processes.

STUDENT ASSESSMENTS: Student are assessed by their participation and limited set of homework assignments

CREDIT HOURS: 2.0
5011 MSTP Cardiac Physiology

COURSE DESCRIPTION: The course will cover the fundamentals of cardiovascular physiology. The initial part of the course will cover the basics of muscle contraction and the differences between cardiac, skeletal and smooth muscle, as well as the autonomic nervous system and hemodynamics. The second part of the course will focus on cardiac function covering electrophysiology, pump function, and neurohumoral control of cardiac contractility, output and blood pressure. The course will be required for all first year MSTP students.

REQUIRED MATERIALS: Assigned textbook chapters, and articles distributed either as paper copies or pdfs

PREREQUISITES: Students should have a year of biology including organ systems biology and a year of physics covering energy and work plus the electrical concepts of voltage, current, resistance. Students should also know about second messenger systems including cAMP, cGMP, IP3 and DAG. The Block 1 graduate course Membrane Physiology and Transport is a required prerequisite for this course.

STUDENT PREPARATION: Students should be familiar with the basics of electrical excitability and action potentials. They should have knowledge of hormonal second messenger systems and the basics of muscle contraction.

SUITABLE FOR 1ST YEAR STUDENTS: Yes

UNIQUE TRAINING OFFERED IN THIS COURSE: N/A

STUDENT ASSESSMENTS: Small group TBL participation, surprise quizzes and an essay final exam.

CREDIT HOURS: 2.0
5010 Membrane Physiology & Transport

COURSE DESCRIPTION: Membranes form essential barriers that separate the cytoplasm from the external world and from subcellular compartments such as mitochondria, endosomes, lysosomes, etc. Lipid bilayers are a major component of cellular membranes that create a barrier to the transport of ions and hydrophilic solutes across cell membranes. Membrane proteins constitute about 25% of genomes of most organisms. Transport proteins and channels create pathways for the regulated movement of solutes across cell membranes and for the creation of transmembrane electrical potentials. This course will discuss:

1) The fundamentals of solute transport across cell membranes
2) The role of ion movement in the creation of membrane potentials
3) The role and regulation of these transport processes in the physiology of nerves and epithelia

REQUIRED MATERIALS: Course readings will be distributed or made available as pdf files.

PREREQUISITES: Prerequisites include one year of general chemistry, one year of physics, and preferably at least a year of biology and a semester of biochemistry.

STUDENT PREPARATION: Students should be familiar with the structure of ions and non-electrolytes in solution, elementary thermodynamics and Gibbs free energy, acid-base chemistry, structure of biological membranes and membrane proteins, electrical potentials, resistance, conductance, and current.

SUITABLE FOR 1ST YEAR STUDENTS: Yes

UNIQUE TRAINING OFFERED IN THIS COURSE: Some material in this course will overlap with the Molecular and Cellular Neuroscience course, particularly lectures focusing on the ionic basis of membrane and action potentials. This course will be required to first year MSTP students.

STUDENT ASSESSMENTS: Student’s grades will be based on class participation, multiple quizzes and an essay format final exam.

CREDIT HOURS: 2.0
7401 Molecular and Cellular Neuroscience

COURSE DESCRIPTION: The course offers a multidisciplinary approach to the study of the nervous system from first principles. The class format consists of a combination of formal and informal lectures and student presentations with a major emphasis on interactive class discussion. The course requires active student participation during the class and offers review sessions if needed. There is a course website and an active online discussion forum, a course wiki written by the students every year, and several laboratory presentations (in addition to normal course scheduled lectures). The students also prepare and present at a “sensory transduction” symposium.

REQUIRED MATERIALS: Access to the internet

RECOMMENDED MATERIALS:

PREREQUISITES: None.

STUDENT PREPARATION: N/A

SUITABLE FOR 1ST YEAR STUDENTS: No.

UNIQUE TRAINING OFFERED IN THIS COURSE: The students learn to approach topics from first principles. They also learn how to be very interactive, and defend their points of view. There is no overlap with any course at Einstein

STUDENT ASSESSMENTS: Primarily by an oral exam at the end of the course. Other contributing factors include class participation, and activity on the course online discussion forum and course wiki.

CREDIT HOURS: 6.0
7006 Molecular Genetics

COURSE DESCRIPTION: The course is designed to convey genetic concepts and their application in a diverse set of model systems. It will allow students to understand and critically evaluate the literature. The course is divided into three sections. In the first section, students will briefly review basic genetic concepts. This part is followed by a discussion of yeast and bacteria as genetic models and their use in high throughput and classical biochemical approaches. In the second section, students will learn about the major vertebrate systems, including human genetics, mouse genetics, and zebra fish genetics. The third section is dedicated to invertebrate genetics (including worms and flies) as well as to a discussion of special aspects of cancer genetics. Overall, this course should convey graduate level genetics in all its modern facets and constitute the foundation for more advanced studies.

REQUIRED MATERIALS: Computer

PREREQUISITES: Undergraduate genetics is required

STUDENT PREPARATION: Basic concepts should be known, including but not limited to DNA as the basis for heredity, Mendelian concepts of inheritance, structure of DNA and genes as well as basic genetic methods.

SUITABLE FOR 1ST YEAR STUDENTS: Yes

UNIQUE TRAINING OFFERED IN THIS COURSE: Unique to this course is a comprehensive syllabus that includes a brief introduction and an overview of all major model organisms currently in use for research. Using both classic and modern examples, the possibilities and contributions of the field of Genetics to the understanding of biological processes will be discussed.

STUDENT ASSESSMENTS: 3 exams.

CREDIT HOURS: 5.0