Marquee Middle Image

Faculty Profile

Nicholas E. Baker, Ph.D.

Dr. Nicholas E. Baker

Professor, Department of Genetics

Professor, Department of Developmental & Molecular Biology

Professor, Department of Ophthalmology & Visual Sciences

Harold and Muriel Block Chair in Genetics

 

Professional Interests


Growth and Development of Drosophila

Development requires the coordination of cell type specific differentiation with growth and morphogenesis.  Growth must be down-regulated on terminal cell cycle exit, and up-regulated for regeneration or tissue regulation in response to damage.  Many diseases involve disorders in these events.  These processes can be studied through genetic manipulation of intact animals.  We use the fruitfly Drosophila melanogaster, which permits in vivo studies not yet possible in most other organisms. We are also employing mathematical models to understand cell interactions fully.

Our current projects include:

1) the mechanism of cell competition, an interaction that occurs between cells that differ in ribosomal gene dose or in the dose of certain cancer genes such as myc.  It is thought that ribosomal protein gene mismatches are used to identify aneuploid cells, which are then eliminated to suppress cancer and genome damage during  aging;

2) the roles of HLH transcription factors and how they are controlled both to allow differentiation and to promote or suppress progenitor cell proliferation, a process that seems to underly multiple human diseases;  

3) systematic identification of growth and differentiation regulators from transcriptome analysis during eye development;

4) the mechanisms that block cell cycle entry in differentiating neurons, the mechanisms that prevent cytokinesis in neurons, and the relationship of neuronal cell cycle defects to neurodegenerative disease.

5) mathematical modeling of tissue patterning.

These basic processes that balance growth against terminal differentiation are so fundamental to multicellular organisms that they contribute to understanding many normal and pathological processes.  The genes we study are relevant to human diseases including many cancers, cellular senescence, diabetes, Diamond Blackfan Anemia, neuronal dendrite development, multiple neurodegenerative diseases, polycystic kidney disease, Sjogren’s Syndrome, and developmental changes associated with pregnancy and lactation.

For more details, and complete list of publications, please see our website at
http://fruitfly4.aecom.yu.edu/index.html

 

Selected Publications

 

Selected recent publications

Wang, L.-H. and Baker, N.E.  (2015).  Salvador-Warts-Hippo pathway in a developmental checkpoint monitoring Helix-Loop-Helix proteins.  Dev Cell in press.

Kale, A., Li, W., Lee, C.-H. and Baker, N.E.  (2015).  Apoptotic mechanisms during competition of ribosomal protein mutant cells: roles of the initiator caspases Dronc and Dream/Strica. Cell Death Differen in press.

Fullard, J.F.  and Baker, N.E.  (2015).  Signaling by the engulfment receptor Draper: a screen in Drosophila melanogaster implicates cytoskeletal regulators, Jun N-terminal Kinase, and Yorkie.  Genetics in press.

Baker, N.E. and Jenny, A.  (2014).  Metabolism and the other fat: a protocadherin in mitochondria.  Cell  158: 1240-1.

Ruggiero, R., Kale, A., Thomas, B. and Baker, N.E.  (2012)  Mitosis in neurons: Roughex and Anaphase Promoting Complex maintain cell cycle exit to prevent cytokinetic and axonal defects in Drosophila photoreceptor neurons.  PLoS Genetics 8:e1003049.

Bhattacharya, A. and Baker, N.E.  (2011). A network of broadly-expressed HLH genes regulates tissue-specific cell fates. Cell 147, 881-892.

Lubensky, D.K., Pennington, M.W., Shraiman, B., and Baker, N.E. (2011).  A dynamical model of ommatidial crystal formation.  Proc Natl Acad Sci 108: 11145-11150.

Baker, N.E., and Firth, L.C.  (2011).  Retinal Determination Genes function along with cell-cell
signals to regulate Drosophila eye development: examples of multi-layered regulation by Master
Regulators.  Bioessays 33: 538-546.

Baker, N.E. (2011).  Cell competition.  Curr Biol 21:  R11-15.


 

 


 

More Information About Dr. Nicholas Baker

Baker laboratory

Material in this section is provided by individual faculty members who are solely responsible for its accuracy and content.

Contact

Albert Einstein College of Medicine
Jack and Pearl Resnick Campus
1300 Morris Park Avenue
Ullmann Building, Room 805
Bronx, NY 10461

Tel: 718.430.2854
nicholas.baker@einstein.yu.edu

 
Pubmed Search
Collexis Research Profiles
Einstein Research Profiles (ERP) is one of the innovative technologies to create collaborative bridges within and across the entire bench-to-bedside-to-population spectrum of research. The ERP website has been developed in partnership with Collexis to give investigators easy access to PubMed publications, coauthor networks, information about NIH grants, and research networks.

Media Coverage

USA Today quotes Dr. Nicholas Baker about a recent paper in Nature that found a gene which may be responsible for the color and patterns that appear on insect wings.

More media coverage