Marquee Middle Image

Faculty Profile

Charles E. Rogler, Ph.D.

Dr. Charles E. Rogler

Professor, Department of Medicine (Gastroenterology & Liver Diseases)

Professor, Department of Microbiology & Immunology

Professor, Department of Genetics

 

Professional Interests

THE CHARLES E. ROGLER LABORATORY

 Liver Research Center, Department of Medicine, 

Fundamental mechanisms of microRNA regulation of gene expression and cell fate. 

       The overall mission of the Charles E. Rogler laboratory is to obtain a fundamental understanding of miRNA action as it pertains to aspects of liver development, growth and disease.  In this quest we have focused on three major areas of research where new understanding is critically needed.  These three areas are listed below. 

 1.  Studies on the roles of miRNAs in hepatocarcinogenesis.

A major  question remaining in cancer biology is understanding how oncogenes and tumor suppressor genes interact along common pathways involved in controlling malignant traits such as independence from growth factors, immortalization, avoiding apoptosis, angiogenesis, and metastatic capacity.  miRNAs are a relatively new class of genes that impact on virtually all aspects of mammalian development and malignant conversion of cells.

Our laboratory has pioneered studies in which miRNAs have been shown to have oncogenic roles in hepatocarcinogenesis.    After determining the miRNA profiles of Hepatocelllular Carcinoma's (HCC),( Pub #3) we identified a specific miRNA polycistron, designated the miR-17-92 locus, in which miRNA are up-regulated in virtually all primary HCCs. We also showed that knockdown of the miR 17-92 locus miRNAs partially reverses the malignant phenotype (Pub #5)

Recently we have shown that the oncogenic microRNA, miR-21, specifically targets a tumor suppressor, RHOB.  We showed that blocking miR-21 reduces the metastatic properties of HCC (Pub # 9).  Studies are ongoing to identify new targets of the oncogenic miRNAs in order to understand how oncogenic pathways may be linked through miRNAs and to uncover new pathways involved in hepatocarcinogenesis. 

2. Studies on the roles of miRNAs in liver stem cell differentiation.

            During chronic disease the liver often utilizes its stem cell compartment, in addition to hepatocyte regeneration, to restore liver mass. However, our understanding of mechanisms controlling differentiation of liver stem cells is fragmentary. microRNAs play important roles in cellular differentiation and provide an entirely new framework to understand molecular control of cellular differentiation. 

Our laboratory has recently discovered that a a specific set of three miRNAs from the miR-23b polycistron, (namely miRs-23b,27b, and 24) regulate one of the most important signal transduction networks in mammalian biology, namely the TGFbeta signaling pathway (Pub #7). We reported that all three miRNAs listed above specifically target a critical set of genes in the pathway, namely Smads 3,4, and 5. Our laboratory is actively pursuing investigations to understand the specific mechanisms of the interactions and the wide ranging biological effects of the miRNA regulatory actions. 

3. Development of a biochemically based protocol for the global identification of miRNAs and miRNA targets involved in liver stem cell biology and liver disease.

The field of miRNA biology is currently limited by our knowledge of authentic miRNA targets.  Without such information our understanding of roles of miRNAs will remain fragmentary.  Our laboratory has developed a novel and specific biochemically based protocol for the isolation and identification of miRNAs and their targets from liver (unpublished data, manuscript in preparation).  

Using deep sequencing we have now identified thousands of miRNA targets.  This approach has,  for the first time directly shown the importance of miRNAs in targeting large non-coding RNAs in the cell, such as H19.  The approach has also identified functionally related genes that are targeted by miRNAs from the miR-23b polycistron.  

We are continuing to develop and test exciting new hypotheses on miRNA action in the liver based on the deep set of data we have obtained.  This approach is confirming our overall model that miRNAs will be shown to have very wide ranging effects on liver cell biology and differentiation as research proceeds in the coming years. 

 

 

Selected Publications

Representative Publications:
 

 Representative Recent Publications (for complete list refer to pubmed) 

1.  Daqian Sun, Margherita Melegari, Sunandini Sridhar, Charles E. Rogler, and Ling Zhu.  Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown.  BioTechniques 41: doi10.2144/000112203, 2006.

2. Zhou, H.C., Rogler, L.E., Tepperman, L., Morgan, G., and Charles E. Rogler.  Identification of hepatocytic and bile ductular cell lineages and candidate stem cells in bipolar ductular reactions in cirrhotic human liver.  Hepatology 45: 716-724, 2007.

3. Landgraf, P., Sewer, A., Sheridan, R., Iovino, N., Aravin, A., Rice, A., Silva, A., Pfeffer, S., Landthaler, M. et.al.   A Mammalian microRNA Expression Atlas Based on Small RNA Library SequencingCell 129:1401-1414, 2007.

4. Rogler, L.E., Zhou, H.C., LeVoci, L. and Rogler, C.E.  Clonal, cultured, murine fetal liver hepatoblasts maintain their liver specification in chimeric mice. Hepatology, 46: 1971-1978, 2007.

5.  Connolly, E, Melegari, M., Landgraf, P., Tchaikovskaya, T., Tennant, B.C., Slagle, B.L., Rogler, L., Zavolan, M., Tuschl, T. and Rogler, C.E.  Elevated expression of the miR-17-92 polycistron and miR-21 in hepatocellular carcinoma contributes to the malignant phenotypeAmerican  Journal of  Pathology  173:856-864: DOI: 10.2353/ajpath.2008.080096, 2008.

6. Rogler, C.E.  MicroRNAs make inroads into liver development. Gastroenterology 136:770-772, 2009.

7.  Rogler, C.E., Levoci, L., Tchaikovskaya, T. and Rogler, L.E.  MiR-23b cluster miRNAs regulate TGFβ/BMP signaling and differentiation of liver stem cells by targeting Smads. Hepatology 50: 575-584, 2009.

8. Rogler CE and Rogler LE.  MicroRNAs and Liver Biology in  THE LIVER, Biology and Pathobiology, Editor Win Arias, Nov. 2009.

9. Erin C. Connolly, Koenraad Van Doorslaer, Leslie Rogler, and Charles E. Rogler. Over-expression of micoRNA-21 promotes a metastatic phenotype by targeting the tumor suppressor, RHOB Molecular Cancer Research; 8: 691-700, 2010

 

Material in this section is provided by individual faculty members who are solely responsible for its accuracy and content.

Contact

Albert Einstein College of Medicine
Jack and Pearl Resnick Campus
1300 Morris Park Avenue
Ullmann Building, Room 509
Bronx, NY 10461

Tel: 718.430.2607
charles.rogler@einstein.yu.edu

 
Pubmed Search