Marquee Middle Image

Faculty Profile

Mark F. Mehler, M.D.

Dr. Mark F. Mehler

Professor, The Saul R. Korey Department of Neurology

Professor, Dominick P. Purpura Department of Neuroscience

Professor, Department of Psychiatry and Behavioral Sciences

Chair, The Saul R. Korey Department of Neurology

Alpern Family Foundation Chair in Cerebral Palsy Research

Director, Institute for Brain Disorders and Neural Regeneration

 

Professional Interests

The primary focus of our laboratory is on defining the regional localization and the biological properties of neural stem cells during embryonic and postnatal development and in the mature and the aging mammalian brain. We are also using stem cells as "biological probes" to elucidate the pathogenesis of a spectrum of complex and poorly understood acquired and genetic nervous system disorders. In these prototypical disorders, distinct profiles of regional stem cells or their more lineage-restricted neuronal or glial progeny undergo irreversible injury and death in response to acute or more chronic injury signals.

Further, we are attempting to use the knowledge gained from these multidisciplinary studies to design innovative gene- and stem cell-based regenerative therapies. We are in the process of defining the dynamic roles of environmental factors, cell-cell signaling pathways and cell autonomous cues in promoting stem cell activation, expansion, lineage restriction, lineage commitment, cell cycle exit and terminal differentiation. We have identified specific transcription factor codes that endow the progeny of specific stem cell subpopulations with their unique cellular properties.

These insights have already allowed us to "reprogram" different regional stem and progenitor cells both in vitro and in vivo to acquire the cellular properties of specific neuronal and glial subtypes that are lost in different classes of neurological diseases. We have also utilized embryonic stem cells, both to define initial stages of neural induction and patterning of the neural tube that have previously been difficult to examine experimentally, and as therapeutic reagents for those diseases of the nervous system in which multiple regional neuronal and glial subtypes are targeted. The ultimate aim of these studies is to identify innovative approaches to brain repair by activation of latent neural stem cell pools throughout the neuraxis to engage in selective regeneration of those cell types and neural network connections that have been compromised in specific disease states. The ability to activate and recruit these latent developmental programs to participate in selective neural regenerative responses will help to reestablish functional neural networks that preserve the integrity of previously acquired informational traces.

More importantly, a better understanding of the pathogenesis of individual neurological disorders will allow us to more effectively employ our emerging neural regenerative strategies. For example, we are investing the possibility that early developmental abnormalities are important in the etiology of disorders of the aging brain, namely neurodegenerative diseases such as Alzheimer's, Huntington's and Parkinson's Diseases. We are also examining the hypothesis that primary brain tumors are caused by two distinct types of gene mutations:

i. Mutations in selected genes that promote progressive stages of neuronal and glial maturation from neural stem cells, and

ii. Mutations in different classes of genes that normally prevent mature glial cells from undergoing ectopic cell cycle reentry and dedifferentiation.

Further, we are attempting to define the individual profiles of abortive endogenous stem and progenitor cell responses to those injury signals found in acute stroke and in demyelinating diseases such as multiple sclerosis. These studies will allow us to develop effective strategies to augment the endogenous stem cell response to injury by the use of novel therapeutic modalities that i. Selectively enhance positive response cues (regenerative cytokines and targeted transcription factors) and ii. Concurrently promote the removal of inhibitory signals (inactivation of inflammatory cytokines and blockade of receptors that mediate inhibition of neurite outgrowth and axonal pathfinding by myelin and associated breakdown products).

 

More Information About Dr. Mark Mehler

Institute for Brain Disorders and Neural Regeneration

Laboratory Page

Material in this section is provided by individual faculty members who are solely responsible for its accuracy and content.

Contact

Albert Einstein College of Medicine
Rose F. Kennedy Center
1410 Pelham Parkway South , Room 220
Bronx, NY 10461

Tel: 718.430.3543
Fax: 718.430.8785
mark.mehler@einstein.yu.edu

 
Collexis Research Profiles
Einstein Research Profiles (ERP) is one of the innovative technologies to create collaborative bridges within and across the entire bench-to-bedside-to-population spectrum of research. The ERP website has been developed in partnership with Collexis to give investigators easy access to PubMed publications, coauthor networks, information about NIH grants, and research networks.

Media Coverage

Crain’s New York Business features Dr. Mark Mehler in a series of profiles on neuroscientists working to unlock the mysteries of brain development, function and disease.

Time, United Press International (UPI), Canadian Broadcasting Corporation (CBC) and Asian News International (ANI) feature research by Drs. Dominick Purpura and Mark Mehler regarding their theory that the brains of people with autism are structurally normal but dysregulated, meaning symptoms of the disorder might be reversible.

More media coverage