Marquee Middle Image

Faculty Profile

David Shechter, Ph.D.

Dr. David Shechter

Assistant Professor, Department of Biochemistry

 

Professional Interests

Chromatin and the Biochemistry of Epigenetic Information

Our research interests are focused on understanding chromatin, the complex of DNA, histones, and other proteins that constitute the physiological form of the genome. In particular, we are interested in the role of histone post-translational modifications and histone chaperones in establishing an embryonic epigenetic state, how this process is misregulated in cancers, and how to drug components of the machinery.

Epigenetics is a phenomenon important for an overall increase in the complexity of the genome without changes in gene sequence. Post-translational modifications of histones, and deposition of histone variants, establish a “histone code” of activation or repression of transcription and other chromatin-mediated transactions, and constitute a major part of the epigenome. Epigenetic information is information content "on top of" the DNA-encoded genetic material. Epigenetic information is the landscape on which the dynamic usage of genetic information is encoded.

We primarily utilize protein biochemistry and enzymology, structural biology, and embryos of the frog Xenopus laevis in our studies. These tools allow us to probe evolutionarily conserved mechanisms specifying critical events in chromatin biology and in maternal and zygotic control of development. Our combined use of rigorous in vitro studies along with in vivo studies in the frog provides an uncompromised approach to fully understanding epigenetic phenomena.We are currently pursuing a number of specific research avenues, including:

  • determination of the biochemical mechanisms and biological function of the essential PRMT5-MEP50 histone arginine methyltransferase complex
  • applying cutting-edge rational approaches to design small molecule chemical probes and lead molecules for drug screening for PRMT5
  • analyzing the histone code specified by PRMT5-catalyzed histone methylation in embryos and breast cancer cells
  • Determining how phosphorylation, methylation, and glutamylation of histone chaperones Nucleoplasmin and Nap1 occur and how these post-translational modifications regulate histone deposition activity
  • Using quantitative techniques (hydrogen-deuterium exchange, NMR, biosensors) to understand histone chaperone binding and release of histones

These studies are designed to probe the molecular role of chromatin components in the establishment of the embryonic state and have direct bearings on understanding basic events in development and cancer. Our approach provides a unique “bottom-up” molecular understanding of the role of egg components, such as pre-deposition histones, histone modifications, and histone chaperones, in writing the embryonic chromatin state.

 

Selected Publications

  1. Phosphorylation and arginine methylation mark histone H2A prior to deposition during Xenopus laevis development
    Wei-Lin Wang, Lissa C Anderson, Joshua J Nicklay, Hongshan Chen, Matthew J Gamble, Jeffrey Shabanowitz, Donald F Hunt and David Shechter. Epigenetics & Chromatin, 2014 7:22
  2. Structure of the Arginine Methyltransferase PRMT5-MEP50 Reveals a Mechanism for Substrate Specificity Ho MC, Wilczek C, Bonanno JB, Xing L, Seznec J, Matsui T, Carter LG, Onikubo T, Kumar PR, Chan MK, Brenowitz M, Cheng RH, Reimer U, Almo SC, Shechter D.(2013).PLoS ONE 8(2): e57008. doi:10.1371/journal.pone.0057008.
  3. Protein Arginine Methyltransferase Prmt5-Mep50 Methylates Histones H2A and H4 and the Histone Chaperone Nucleoplasmin in Xenopus laevis Eggs. Wilczek C, Chitta R, Woo E, Shabanowitz J, Chait BT, Hunt DF, Shechter D.. J Biol Chem2011 Dec 9;286(49):42221-31.  
  4. Laura Banszynski, C. David Allis, David Shechter. Analysis of histones and chromatin in Xenopus laevis egg and ooctye extractsMethods2010. Vol 51:1.
  5. A distinct H2A.X isoform is enriched in Xenopus laevis eggs and early embryos and is phosphorylated in the absence of a checkpoint. Shechter D, Chitta RK, Xiao A, Shabanowitz J, Hunt DF, Allis CD. Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):749-54. 
  6. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Xiao A, Li H, Shechter D, Ahn SH, Fabrizio LA, Erdjument-Bromage H, Ishibe-Murakami S, Wang B, Tempst P, Hofmann K, Patel DJ, Elledge SJ, Allis CD. Nature. 2009 Jan 1;457(7225):57-62.
  7. Analysis of histones in Xenopus laevis. I. A distinct index of enriched variants and modifications exists in each cell type and is remodeled during developmental transitions. Shechter D, Nicklay JJ, Chitta RK, Shabanowitz J, Hunt DF, Allis CD. J Biol Chem. 2009 Jan 9;284(2):1064-74.
  8. Analysis of histones in Xenopus laevis. II. mass spectrometry reveals an index of cell type-specific modifications on H3 and H4. Nicklay JJ, Shechter D, Chitta RK, Garcia BA, Shabanowitz J, Allis CD, Hunt DF. J Biol Chem. 2009 Jan 9;284(2):1075-85.
  9. Extraction, purification and analysis of histones. Shechter D, Dormann HL, Allis CD, Hake SB. Nature Protocols 2007;2(6):1445-57.
  10. ATM and ATR check in on origins: a dynamic model for origin selection and activation. Shechter D, Gautier J. Cell Cycle. 2005 Feb;4(2):235-8
  11. DNA unwinding is an Mcm complex-dependent and ATP hydrolysis-dependent process. Shechter D, Ying CY, Gautier J. J Biol Chem. 2004 Oct 29;279(44):45586-93. 
  12. Regulation of DNA replication by ATR: signaling in response to DNA intermediates. Shechter D, Costanzo V, Gautier J. DNA Repair (Amst). 2004 Aug-Sep;3(8-9):901-8. Review.
  13. MCM proteins and checkpoint kinases get together at the fork. Shechter D, Gautier J. Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):10845-6. 
  14. ATR and ATM regulate the timing of DNA replication origin firing. Shechter D, Costanzo V, Gautier J. Nature Cell Biology 2004 Jul;6(7):648-55
  15. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Costanzo V, Shechter D, Lupardus PJ, Cimprich KA, Gottesman M, Gautier J. Mol Cell. 2003 Jan;11(1):203-13.
  16. The intrinsic DNA helicase activity of Methanobacterium thermoautotrophicum delta H minichromosome maintenance protein. Shechter DF, Ying CY, Gautier J. J Biol Chem. 2000 May 19;275(20):15049-59.
 

Research Images

Research Image 1

Click image to enlarge

More Information About Dr. David Shechter

Shechter Lab Website - Research Interests, Lab Members, Protocols, Photos, etc

Material in this section is provided by individual faculty members who are solely responsible for its accuracy and content.

Contact

Albert Einstein College of Medicine
Jack and Pearl Resnick Campus
1300 Morris Park Avenue
Forchheimer Building, Room 304
Bronx, NY 10461

Tel: 718.430.4120
Fax: 718.430.8565
david.shechter@einstein.yu.edu

 
Pubmed Search
Collexis Research Profiles
Einstein Research Profiles (ERP) is one of the innovative technologies to create collaborative bridges within and across the entire bench-to-bedside-to-population spectrum of research. The ERP website has been developed in partnership with Collexis to give investigators easy access to PubMed publications, coauthor networks, information about NIH grants, and research networks.