Marquee Middle Image

Faculty Profile

Streamson C. Chua, Jr., M.D., Ph.D.

Dr. Streamson C. Chua, Jr.

Professional Interests

Dr. Streamson Chua's group is interested in genetic contribution to the chronic disease of obesity, diabetes, and diabetes complications. One interest is in developing an understanding of the various functions of leptin responsive neurons as they relate to ingestion, control of body composition, metabolism, and reproduction. A second interest is to dissect the genetic contribution to the susceptibility/resistance to complications of long term hyperglycemia, particularly effects on the endocrine pancreas and the kidney.


Before coming to Einstein in 2005, Dr. Streamson Chua was a member of the group of Dr. Jules Hirsch and Dr. Rudolph Leibel at the Rockefeller University, where he participated in efforts to understand the genetics of obesity. He then joined the faculty of Columbia-Presbyterian Medical School as an associate professor, continuing his work on the function of the hormone leptin that influences obesity and diabetes. Currently, he is pursuing research on genes that are linked to increased susceptibility to obesity and diabetic complications, particularly beta cell loss and nephropathy. Dr. Chua received his bachelor’s degree from Johns Hopkins University, and then earned a combined M.D.-Ph.D. at Columbia University. He completed a one-year internship at New York Hospital and then undertook a post-doctoral fellowship in pediatric endocrinology to clone the gene for the steroid-producing enzyme, 11 beta hydroxylase.


Selected Publications

Reviews, Chapters, and Editorials 

  1. Chua, S.C. and M.F. Maylie-Pfenninger. A cell surface 105 kD antigen, present on multipotential teratocarcinoma lines but not on Nulli, involved in mouse preimplantation development. In: Teratocarcinoma Stem Cells, eds. G.R. Martin, L. Silver and S. Strickland. 1983. 
  2. Hirsch, J., R.L. Leibel and S.C. Chua. A Clinical Perspective on Peptides and Food Intake: Pharmacological Treatment of Obesity, Satellite Symposium to the 6th International Congress on Obesity, Japan, October 21-26, 1990. American Journal of Clinical Nutrition 55(Supplement):296S-298S, 1992. 
  3. Chua, S.C., J.L. LaChaussee. Letters: Molecular pathogenesis of obesity in the fatty rat. Appetite. 21:303, 1993. 
  4. Chua, S.C. and R.L. Leibel. Molecular genetic approaches to obesity. In C. Bouchard ed.. Genetics of Obesity. CRC Press. Boca Raton. pp. 213-222, 1994. 
  5. Leibel, R.L., S.C. Chua, and W.K. Chung. Animal models of genetic obesity. In A. Angel, H. Anderson, C. Bourchard, D. Lau, L. Leiter and R. Mendelson eds. Progress in Obesity Research: 
  6. John Libbey & Company, Ltd. London/7th International Congress on Obesity. pp. 263-217, 1995. 
  7. Chua, S.C. and R. L. Leibel. An Ounce of Prevention. (Editorial). Journal of Pediatrics. 128:591-593, 1996. 
  8. Chua, S.C. and R.L. Leibel. Obesity genes: Molecular and metabolic mechanisms. Diabetes Reviews, 5:2-7, 1996. 
  9. Chua, S.C., Models of Monogenic Obesity, Behavioral Genetics. 27:277-284, 1997. 
  10. Leibel, R.L., W.K. Chung, and S.C. Chua. The molecular genetics of rodent single gene obesities. Journal of Biological Chemistry 272:31937-31940, 1997. 
  11. Leibel, R.L. S.C. Chua and M. Rosenbaum, Obesity: The Molecular Physiology of Weight Regulation, in The Metabolic and Molecular Bases of Inherited Disease, VIII Edit., C.R. Scriver, A.L. Beaudel, W.S.Slu and D. Valle, edit. 2001. 
  12. Chua, S.C., and R.L. Leibel, Body Weight Regulation: Neural, Endocrrine, and Autocrine Mechanisms, in Obesity: Theory and Therapy, ed. Albert J. J. Stunkard and Thomas A. Wadden, Lippincott-Raven, 2001. 
  13. Chua, S.C., K. Graham and R.L. Leibel, Molecular Genetics of Rodent and Human Single Gene Mutations Affecting Body Composition, in Handbook of Obesity, Etiology and Pathophysiology (second edition), ed. G.A. Bray and C. Bouchard, Marcel Dekker, 2003. 
  14. Chua, SC Jr., L Herberg, and EH Leiter, Obesity/diabetes in mice with mutations in the leptin or leptin receptor genes: an update, in Frontiers in animal models of diabetes research (second edition). ed. E. Shafrir, CRC Press, 2006 (in press). 

Original Articles [1-59] 

  1. Chua, S.C., et al., Cloning of cDNA encoding steroid 11 beta-hydroxylase (P450c11). Proceedings of the National Academy of Sciences U S A, 1987. 84(20): p. 7193-7. 
  2. Mouw, A.R., et al., Structural and functional analysis of the promoter region of the gene encoding mouse steroid 11 beta-hydroxylase. Journal of Biological Chemistry, 1989. 264(2): p. 1305-9. 
  3. Chua, S.C., Jr., et al., Food deprivation and hypothalamic neuropeptide gene expression: effects of strain background and the diabetes mutation. Brain Research Molecular Brain Research, 1991. 11(3-4): p. 291-9. 
  4. Chua, S.C., Jr., R.L. Leibel, and J. Hirsch, Food deprivation and age modulate neuropeptide gene expression in the murine hypothalamus and adrenal gland. Brain Research Molecular Brain Research, 1991. 9(1-2): p. 95-101. 
  5. Galbraith, R.A., S.C. Chua, Jr., and A. Kappas, Hypothalamic mechanism for cobalt protoporphyrin-induced hypophagia and weight loss: inhibition of the feeding response to NPY. Brain Research Molecular Brain Research, 1992. 15(3-4): p. 298-302. 6.
  6. Chua, S.C., et al., The little (lit) mutation cosegregates with the growth hormone releasing factor receptor on mouse chromosome Mammalian Genome, 1993. 4(10): p. 555-9. 
  7. Chua, S.C., et al., Utility of a c-Jun microsatellite in determining gene dosage for fatty (fa). Obesity Research, 1993. 1: p. 475-480. 
  8. Jhanwar-Uniyal, M. and S.C. Chua, Jr., Critical effects of aging and nutritional state on hypothalamic neuropeptide Y and galanin gene expression in lean and genetically obese Zucker rats. Brain Research Molecular Brain Research, 1993. 19(3): p. 195-202. 
  9. Power, L.M., S.C. Chua, Jr., and R.L. Leibel, Locus D1S21 contains exonic sequence from the C8 beta component of complement. Mammalian Genome, 1994. 5(2): p. 125-6. 
  10. Wajnrajch, M.P., et al., Human growth hormone-releasing hormone receptor (GHRHR) maps to a YAC at chromosome 7p15. Mammalian Genome, 1994. 5(9): p. 595. 
  11. Green, E.D., et al., The human obese (OB) gene: RNA expression pattern and mapping on the physical, cytogenetic, and genetic maps of chromosome 7. Genome Research, 1995. 5(1): p. 5-12. 
  12. Kershaw, E.E., et al., Molecular mapping of SSRs for Pgm1 and C8b in the vicinity of the rat fatty locus. Genomics, 1995. 27(1): p. 149-54. 
  13. Kershaw, E.E., S.C. Chua, Jr., and R.L. Leibel, Localization of a (CA)n repeat in glucagon-like peptide-1 receptor gene (Glp1r) to proximal mouse chromosome 17 and its linkage to other markers. Mammalian Genome, 1995. 6(4): p. 301-3. 
  14. Chua, S.C., Jr., et al., Phenotype of fatty due to Gln269Pro mutation in the leptin receptor (Lepr). Diabetes, 1996. 45(8): p. 1141-3. 
  15. Chua, S.C., Jr., et al., Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science, 1996. 271(5251): p. 994-6. 
  16. Meierfrankenfeld, B., et al., Perinatal energy stores and excessive fat deposition in genetically obese (fa/fa) rats. American Journal of Physiology, 1996. 270(4 Pt 1): p. E700-8. 
  17. Norman, R.A., et al., Absence of linkage of obesity and energy metabolism to markers flanking homologues of rodent obesity genes in Pima Indians. Diabetes, 1996. 45(9): p. 1229-32. 
  18. Wajnrajch, M.P., et al., Nonsense mutation in the human growth hormone-releasing hormone receptor causes growth failure analogous to the little (lit) mouse. Nature Genetics, 1996. 12(1): p. 88-90. 
  19. Chagnon, Y.C., et al., Suggestive linkages between markers on human 1p32-p22 and body fat and insulin levels in the Quebec Family Study. Obesity Research, 1997. 5(2): p. 115-21. 
  20. Chua, S.C., Jr., et al., Fine structure of the murine leptin receptor gene: splice site suppression is required to form two alternatively spliced transcripts. Genomics, 1997. 45(2): p. 264-70. 
  21. Chung, W.K., et al., Genetic modifiers of Leprfa associated with variability in insulin production and susceptibility to NIDDM. Genomics, 1997. 41(3): p. 332-44. 
  22. Chung, W.K., et al., PCR-RFLP and SSCP assays for the mouse obese (Lep-ob) mutation. Obesity Research, 1997. 5: p. 183-185. 
  23. Kahle, E.B., et al., The rat corpulent (cp) mutation maps to the same interval on (Pgm1-Glut1) rat chromosome 5 as the fatty (fa) mutation. Obesity Research, 1997. 5(2): p. 142-5. 
  24. Ware, M.L., et al., Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron, 1997. 19(2): p. 239-49. 
  25. White, D.W., et al., Constitutive and impaired signaling of leptin receptors containing the Gln --> Pro extracellular domain fatty mutation. Proceeding of the National Academy of Sciences U S A, 1997. 94(20): p. 10657-62. 
  26. Wu-Peng, X.S., et al., Phenotype of the obese Koletsky (f) rat due to Tyr763Stop mutation in the extracellular domain of the leptin receptor (Lepr): evidence for deficient plasma-to-CSF transport of leptin in both the Zucker and Koletsky obese rat. Diabetes, 1997. 46(3): p. 513-8. 
  27. Kowalski, T.J., et al., Ontogeny of neuropeptide Y expression in response to deprivation in lean Zucker rat pups. American Journal of Physiology, 1998. 275(2 Pt 2): p. R466-70. 
  28. Liu, S.M., R.L. Leibel, and S.C. Chua, Jr., Partial duplication in the leprdb-Pas mutation is a result of unequal crossing over. Mammalian Genome, 1998. 9(9): p. 780-1. 
  29. Schreyer, S.A., S.C. Chua, Jr., and R.C. LeBoeuf, Obesity and diabetes in TNF-alpha receptor- deficient mice. Journal of Clinical Investigation, 1998. 102(2): p. 402-11. 
  30. Korner, J., et al., Regulation of hypothalamic proopiomelanocortin by leptin in lean and obese rats. Neuroendocrinology, 1999. 70(6): p. 377-83. 
  31. Kowalski, T.J., et al., Neuropeptide Y overexpression in the preweanling Zucker (fa/fa) rat. Physiology and Behavior, 1999. 67(4): p. 521-5. 
  32. Wu-Peng, S., et al., Effects of exogenous gonadal steroids on leptin homeostasis in rats. Obesity Research, 1999. 7(6): p. 586-92. 
  33. Brown, J.A., et al., Spontaneous mutation in the db gene results in obesity and diabetes in CD-1 outbred mice. American Journal of Physiology Regulatory and Integrated Comparative Physiology, 2000. 278(2): p. R320-30. 
  34. Korner, J., et al., Effects of leptin receptor mutation on Agrp gene expression in fed and fasted lean and obese (LA/N-faf) rats. Endocrinology, 2000. 141(7): p. 2465-71. 
  35. Wildman, H.F., et al., Effects of leptin and cholecystokinin in rats with a null mutation of the leptin receptor Lepr(fak). American Journal of Physiology Regulatory and Integrated Comparative Physiology, 2000. 278(6): p. R1518-23. 
  36. Hsing, A.W., et al., Prostate cancer risk and serum levels of insulin and leptin: a population-based study. Journal of the National Cancer Institute, 2001. 93(10): p. 783-9. 
  37. Ko, C., et al., Two novel quantitative trait loci on mouse chromosomes 6 and 4 independently and synergistically regulate plasma apoB levels. Journal of Lipid Research, 2001. 42(5): p. 844-55. 
  38. Korner, J., et al., Leptin regulation of Agrp and Npy mRNA in the rat hypothalamus. Journal of Neuroendocrinology, 2001. 13(11): p. 959-66. 
  39. Kowalski, T.J., et al., Transgenic complementation of leptin-receptor deficiency. I. Rescue of the obesity/diabetes phenotype of LEPR-null mice expressing a LEPR-B transgene. Diabetes, 2001. 50(2): p. 425-35. 
  40. Chua, S., Jr., et al., Differential beta cell responses to hyperglycaemia and insulin resistance in two novel congenic strains of diabetes (FVB- Lepr (db)) and obese (DBA- Lep (ob)) mice. Diabetologia, 2002. 45(7): p. 976-90. 
  41. Ho, G.Y., et al., Polymorphism of the insulin gene is associated with increased prostate cancer risk. British Journal of Cancer, 2003. 88(2): p. 263-9.
  42. Hsing, A.W., et al., Insulin resistance and prostate cancer risk. Journal of the National Cancer Institute, 2003. 95(1): p. 67-71. 
  43. Levin, B.E., et al., A new obesity-prone, glucose intolerant rat strain (F.DIO). American Journal of Physiology Regulatory and Integrated Comparative Physiology, 2003. 
  44. Balthasar, N., et al., Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron, 2004. 42(6): p. 983-91. 
  45. Chua, S.C., Jr., et al., Transgenic complementation of leptin receptor deficiency. II. Increased leptin receptor transgene dose effects on obesity/diabetes and fertility/lactation in lepr-db/db mice. Am J Physiol Endocrinol Metab, 2004. 286(3): p. E384-92
  46. Chua, S.C., Jr., Molecular and cellular correlates of the developmental acquisition of mechanisms modulating ingestive behavior. Physiol Behav, 2004. 82(1): p. 145-7. 
  47. Haluzik, M., et al., Genetic background (C57BL/6J versus FVB/N) strongly influences the severity of diabetes and insulin resistance in ob/ob mice. Endocrinology, 2004. 
  48. McMinn, J.E., et al., An allelic series for the leptin receptor gene generated by CRE and FLP recombinase. Mamm Genome, 2004. 15(9): p. 677-85. 
  49. Savontaus, E., et al., Metabolic effects of transgenic melanocyte-stimulating hormone overexpression in lean and obese mice. Endocrinology, 2004. 145(8): p. 3881-91. 
  50. Tortoriello, D.V., J. McMinn, and S.C. Chua, Dietary-induced obesity and hypothalamic infertility in female DBA/2J mice. Endocrinology, 2004. 145(3): p. 1238-47. 
  51. de Luca, C., et al., Complete rescue of obesity, diabetes, and infertility in db/db mice by neuron-specific LEPR-B transgenes. J Clin Invest, 2005. 115(12): p. 3484-93. 
  52. Jo, Y.H., et al., Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit. Neuron, 2005. 48(6): p. 1055-66. 
  53. Levin, B.E., et al., F-DIO obesity-prone rat is insulin resistant before obesity onset. Am J Physiol Regul Integr Comp Physiol, 2005. 289(3): p. R704-11. 
  54. McMinn, J.E., et al., Neuronal deletion of Lepr elicits diabesity in mice without affecting cold tolerance or fertility. Am J Physiol Endocrinol Metab, 2005. 289(3): p. E403-11. 
  55. Wang, Z., et al., Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes, 2005. 54(8): p. 2328-35. 
  56. Zheng, Z., et al., A Mendelian locus on chromosome 16 determines susceptibility to doxorubicin nephropathy in the mouse. Proc Natl Acad Sci U S A, 2005. 102(7): p. 2502-7. 
  57. Dhillon, H., et al., Leptin Directly Activates SF1 Neurons in the VMH, and This Action by Leptin Is Required for Normal Body-Weight Homeostasis. Neuron, 2006. 49(2): p. 191-203. 
  58. Kitamura, T., et al., Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med, 2006. 
  59. Luo, N., et al., Allelic Variation on Chromosome 5 Controls {beta}-Cell Mass Expansion during Hyperglycemia in Leptin Receptor-Deficient Diabetes Mice. Endocrinology, 2006. 147(5): p. 2287-95.



Material in this section is provided by individual faculty members who are solely responsible for its accuracy and content.


Albert Einstein College of Medicine
Jack and Pearl Resnick Campus
1300 Morris Park Avenue
Forchheimer Building, Room 511
Bronx, NY 10461

Tel: 718.430.2986
Fax: 718.430.8557

Collexis Research Profiles
Einstein Research Profiles (ERP) is one of the innovative technologies to create collaborative bridges within and across the entire bench-to-bedside-to-population spectrum of research. The ERP website has been developed in partnership with Collexis to give investigators easy access to PubMed publications, coauthor networks, information about NIH grants, and research networks.