Department of Systems & Computational Biology

Faculty

Aviv Bergman pictureAviv Bergman, Ph.D.
Harold and Muriel Block Chair in Systems & Computational Biology
Professor and Founding Chairman


Our research agenda involves multidisciplinary research into quantitative problems of evolutionary biology that can be approached using a combination of computational, mathematical and experimental tools. The focus of the research program is mainly on quantitative aspects of evolution and developmental biology, however, the relationship between these subjects and experimental molecular genetic studies of evolution and development are an integral part of the research efforts. 

 

 

 Andras Fiser pictureAndras Fiser, Ph.D.
Professor
 

The era of genomics and high throughput experimentation has opened up an opportunity for science and caused a paradigm shift in research. The opportunity is to look at a biological system as a whole. Meanwhile the challenge in research has shifted from data acquisition to the problem of developing computational techniques for systemic and systematic analysis of biological information.

Research topics in our lab include: the evolution of protein structures, modeling protein structures (incorporating experimental restraints, modeling loops and side chains, developing pairwise statistical energy functions, developing sequence-to-structure alignment optimization algorithms) and designing new protein structure topologies using fragments from existing structures. We are also interested in the question of exploring life stage specific virulence factors in apicomplexan pathogens by analyzing high throughput data from proteomics (mass spectrometry and cross-linking), epigenomics (ChIPChip and deep sequencing) and transcriptomics (mRNA expression) experiments and to computationally simulate how the network of their transcriptional regulation genes has to change to allow these pathogens to shuttle between the virulent and non-virulent stages characterized by the high throughput experiments.

 

 

Eduardo Fajardo pictureEduardo Fajardo, Ph.D.
Associate (PI: Andras Fiser)
 

 

 

Jessica Mar pictureJessica Mar, Ph.D.
Assistant Professor


The focus of the Mar lab is to understand the functional impact of variability in biological signals, such as gene expression. We are interested in modeling how variable expression in certain genes affect the regulatory capacity and plasticity of gene networks, and the downstream consequences for cellular phenotypes. Analyzing variability gives us a window into the regulatory control of the genome, and we are exploring how changes in expression variance can better inform our understanding of disease processes. Our work has applications in single cell gene expression, stem and pluripotent cells, cell fate transitions, and cancer studies.

 

 

Yinghao Wu pictureYinghao Wu, Ph.D.
Assistant Professor


Cell adhesions are crucial for many biological phenomena such as tissue morphogenesis, immuneresponse and tumor invasion. The aggregations of membrane receptors on cellular interfaces during these physical processes initiate the elaborate intracellular networks of signaling pathways. Despite remarkable experimental achievements, there is still a long way to eventually form a mechanistic understanding of cell adhesion, and further decipher its intricate connection to signal transduction. By integrating computational analysis with experimental measurements, our lab focuses on developing multi-scale modeling frameworks to study the cross-talks between cell adhesion and cell signaling. We are particularly interested in asking the following questions: why and how different cells form contacts; when and where these contacts are formed at specific locations of our bodies; what are their functional impacts to the downstream signaling pathways, and further to our human health.

 

 

Libusha Kelly pictureLibusha Kelly, Ph.D.
Assistant Professor


We study how ecosystem-level genetic variability influences adaptive responses to dynamic environments. Because microbial genomes of the same 'species' can be extremely diverse at the gene level, 16S characterization is not a reliable metric for the functional capacity of microbial populations. Metagenomics partially overcomes this issue by allowing the identification of functional genes in diverse community samples. Functional capacity, which can be selected for by environmental conditions, is accelerated by the ability of bacteria to exchange genes with each other and with viruses. A major question, therefore, is: How does variability at the gene level affect the functional capacity and interactions between members of microbial populations? Our interests are in 1) how environments select for different sets of microbial and viral genes, and 2) the influence of the commensal microbiota on human drug metabolism.

 

 

Parsa MirajhiParsa Mirajhi, M.D., Ph.D.
Research Associate Professor
 

 

 

Adam KohnAdam Kohn, Ph.D.
Associate Professor 

My lab investigates how visual information is encoded and processed by populations of cortical neurons, and how this processing is affected by recent stimulus history, or adaptation. Our work thus addresses issues of neural coding, cortical plasticity, corticocortical signaling, and the neuronal basis of visual perception. Our approach involves multielectrode recordings in early and midlevel visual areas of anesthetized and awake, behaving macaque monkeys. We use computational methods to interpret and understand physiological data, and psychophysical methods to relate our findings to human perception. We have also begun using optogenetic tools, to further our understanding of corticocortical signaling in primate cortex.

 

 

Ian Willis Ian Willis, Ph.D.
Professor 

Our laboratory is conducting basic research on the mechanisms of eukaryotic transcriptional regulation in response to nutrients and environmental and cellular stress. We are especially interested in defining the signaling pathways and the mechanisms that regulate transcription of ribosomal components and transfer RNAs since these processes are critically important for controlling cell growth. Deregulation of cell growth control is widely recognized as a key event in cell transformation and tumorigenesis and is relevant to a broad range of human diseases. In addition, as the synthesis of new protein synthetic machinery constitutes >85% of nuclear gene transcription in growing cell populations, the tight coordinate control of this process, which involves all three nuclear RNA polymerases, is considered to be critical for metabolic economy and ultimately for cell survival. Our research programs span genetics, molecular biology, biochemistry and structural biology and utilize budding yeast, mammalian cells and mice as model experimental systems. 

 

Former Faculty

Andrew Yates, Ph.D.
Associate Professor

Odelia Schwartz, Ph.D. 
Associate Professor 

Eduardo Zaborowski, Ph.D.
Assistant Professor 

Bojana Gligorijevic, Ph.D.
Instructor 

Click here to log in