Marquee Middle Image

Faculty Profile

Winfried Edelmann, Ph.D.

Dr. Winfried Edelmann

Professor, Department of Cell Biology

Professor, Department of Genetics

The Joseph and Gertrud Buchler Chair in Transgenic Medicine

Faculty Supervisor, Gene Targeting Facility

 

Professional Interests

The maintenance of genomic integrity in all organisms requires multiple DNA repair pathways that are involved in the processes of DNA replication, repair and recombination.  Perturbations in these pathways can lead to increased mutation rates or chromosomal rearrangements that ultimately result in cancer.  MMR is one of the repair systems that mammalian cells employ to maintain the integrity of its genetic information by correcting mutations that occur during erroneous replication.  Mutations in MMR genes are linked to one of the most prevalent human cancer syndromes, Lynch syndrome and a significant number of sporadic colorectal cancers.  At the molecular level tumors that develop in these patients display increased genomic mutation rates as indicated by increased instability at microsatellite repeat sequences  (termed microsatellite instability, MSI).  MMR in eukaryotes is complex and involves several homologs of the bacterial MutS and MutL proteins.  In mammals, the initiation of the repair process requires two complexes formed by three different MutS homologs (MSH):  A complex between MSH2-MSH6 for the recognition of single base mismatches and a complex between MSH2-MSH3 for the recognition of insertion/deletions.  The repair reaction also requires a complex between the two MutL homologs MLH1 and PMS2 that interacts with the MSH complexes to activate subsequent repair events which include the excision of the mismatch carrying DNA strand and its re-synthesis.  These steps are carried out by exonculeases, polymerases and a number of replication associated proteins.  In addition to correcting DNA mismatches, the MMR system mediates an apoptotic response to DNA damage and both of these functions are thought to be important for genome maintenance and tumor suppression.  We have generated gene targeted mouse lines with inactivating mutations in all the different MutS and MutL homologs, and also in genes that function in the later MMR steps to study their roles in genome maintenance and tumor suppression.  In addition, we have generated knock-in mouse lines with missense mutations and conditional knockout mouse lines that inactivate specific MMR functions and/or model mutations found in humans.  Our studies indicate that specific MMR functions play distinct roles in maintaining genome stability and that defects in these functions have important consequences for tumorigenesis. We are currently studying the functions of MMR in intestinal stem cells and cancer stem cells and how loss of MMR in stem cells affects tumorigenesis and the response of tumors to chemotherapeutic treatment.  Our studies have also revealed that some of the MMR proteins play essential roles in class switch recombination and somatic hypermutation during antibody maturation and the control of meiotic recombination in mammals. 

 

Selected Publications

Selected References:

Wang J.Y.J and Edelmann W. 2006. Mismatch Repair Proteins as Sensors of Alkylation DNA Damage. Cancer Cell. 6:417-418.

Schätzlein S., Ju Z., Stepczynska A., Reddy K., Saal N., Lechel A., Roychoudhury A., Kuhnel F., Schirmacher P., Wei K., Edelmann W. and Rudolph K.L. 2007. Exo1 deletion prevents DNA damage signalling and prolongs lifespan of telomere dysfunctional mice without accelerating cancer formation. Cell. 130:863-877.

Takedo M.M. & Edelmann W. 2009. Mouse models of colorectal cancer. Gastroenterology. 136:780-798. PMID: 19263594

Kucherlapati M.H., Lee K., Nguyen A.A., Clark A.B., Hou H. Jr.,Rosulek A.,Li H., Yang K., Fan K., Lipkin M., Bronson R.T., Jelicks L., Kunkel T.A., Kucherlapati R. and Edelmann W. 2010. An Msh2 Conditional Knockout Mouse for Studying Intestinal Cancer and Testing Anti-cancer Agents. Gastroenterology. 138:993-1002.

van Oers J.M., Roa S., Werling U., Liu Y., Genschel J., Hou H. Jr., Sellers R.S., Modrich P., Scharff M.D., Edelmann W. 2010. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance. Proc Natl Acad Sci U S A. 107:13384-13389.

Schaetzlein S., Chahwan R., Roa S., Avdievich E., Wei K., Eoff R.L., Sellers R.S., Clark A.B., Kunkel T.A., Scharff M., Edelmann W. 2013. Mammalian Exo1 encodes both structural and catalytic functions that play distinct roles in important biological processes. Proc Natl Acad Sci U S A. 110:E2470-2479.

van Oers J.M.M., Edwards Y., Chahwan R., Zhang W., Smith C., Pechuan J., Schaetzlein S., Jin B., Wang Y., Bergman A., Scharff M.D., Edelmann W. 2013. The MutSb complex is a modulator of p53-driven tumorigenesis through its functions in both DNA double strand break repair and mismatch repair. Oncogene, in press.

 

More Information About Dr. Winfried Edelmann

Cell Biology Department Webpage

Material in this section is provided by individual faculty members who are solely responsible for its accuracy and content.

Contact

Albert Einstein College of Medicine
Michael F. Price Center
1301 Morris Park Avenue , Room 277
Bronx, NY 10461

Tel: 718.678.1086
Fax: 718.430.8574
winfried.edelmann@einstein.yu.edu

 
Pubmed Search
Collexis Research Profiles
Einstein Research Profiles (ERP) is one of the innovative technologies to create collaborative bridges within and across the entire bench-to-bedside-to-population spectrum of research. The ERP website has been developed in partnership with Collexis to give investigators easy access to PubMed publications, coauthor networks, information about NIH grants, and research networks.